Network Bottlenecks and Market Power*

Vasco M. Carvalho¹, Matt Elliott², John Spray³

¹University of Cambridge & CEPR ²University of Cambridge ³IMF

Workshop on Market Power in Supply Chains, February 2025

*The views expressed in the paper are solely those of the authors and do not necessarily represent the views of the IMF, its Executive Board, or its Management.

Business to business transactions–Uganda

Same data: Organized as a flow problem

Bottlenecks

------- - ----. ---------. ---- - ---- -----------. -----..... ----..... ------- - -----.... -----..... - --------------.... ------------------.

Plan for Today

• Model

- Environment
- How we define bottleneck firms
- Some theory to help justify this choice
- Scalable algorithm to find bottleneck firms
- Proof of concept based on Uganda VAT tax data

Setting

- Raw materials *R*, intermediate goods *I*, final goods *F*
- Intermediate goods and final goods produced by combining input goods
- Input proportions are fixed
 - Beer: fixed proportions of water, malt barley, yeast and hops
 - $A_{\theta\theta'}$ represents the amount of good θ' that is required to make one unit of good θ
 - Using $x_{\theta'}$ units of input θ' , the amount of good θ that can be made is $\min_{\theta':A_{\theta\theta'}>0} x_{\theta'} / A_{\theta\theta'}$
 - i.e., production is Leontief
- We assume input interdependencies can be represented by a directed acyclic graph (DAG)
 - Raw materials are ultimately transformed into final goods
 - e.g., hops get used to produce beer
 - DAG restriction: beer is not used to make hops

Simple Example—Technology DAG

Supply Network

- Set of firms *N*, with each producing a single good
 - Constant marginal cost of producing good θ common across producers
- Firms are embedded in a weighted supply network $G := \{N, (w_{ij})_{ij}\}$
 - Can only source inputs from firms they are connected to
 - Each firm has a capacity limit on its output of ϕ_i
 - Each link has a capacity limit given by w_{ij}

Definition

A firm *i* is a **bottleneck** if and only if the supply of final goods cannot meet consumer demand with firm *i* removed from the network.

Simple Example—Supply-Chain DAG

Simple Example—Bottleneck firms

Bottleneck Firms

Bottleneck Firms

Flow Problem

- Augment the supply network by adding
 - a source node *s* connected to the raw materials
 - a consumer demand node for each product connected to all producers of that product with capacity equal to demand
 - a sink node *t* connected to all consumer demand nodes
- let f_{ki} denote the flow from k to i with $f_k = \sum_i f_{ki}$ denoting the total flow out of k.
- Technology (Leontief) constraints:

$$f_i \leq \frac{1}{A_{\hat{\theta}\theta}} \sum_{k \in Z(\theta)} f_{ki}$$
, for all θ required to produce good *i*.

• capacity constraints:

$$\begin{array}{rcl} f_i & \leq & \phi_i \\ f_{ij} & \leq & w_{ij} \end{array}$$

non-negativity constraints

$$f_{ij} \geq 0$$

Flow Problem

- technology constraints (conservation of flow)
- node capacity constraints
- edge capacity constraints
- non-negativity constraints

A firm is a bottleneck if and only if it makes a positive contribution to the maximum flow (i.e., the maximum flow with it removed is lower).

Theory: Bottleneck firms and market power

- The network structure is common knowledge
- Timing:
 - (i) All firms simultaneously set prices
 - (ii) Given the prices of final goods, a representative consumer with wealth ω chooses a consumption bundle.
 - (iii) Markets (attempt to) clear and payoffs are realized
- Given prices **p**, consumer problem induces demands $D^c_{\theta}(p)$ for final goods.
- Step (iii) maps prices into pairwise demands and supplies throughout the economy, and hence payoffs.

Market clearing formalization

Solution Concept

Definition

An equilibrium is prices, demand and supplies (\mathbf{p}, D, S) such that

- (i) Firms choosing prices **p** is a Nash equilibrium of the pricing game
- (ii) Prices, demand and supplies (\mathbf{p}, D, S) clear the market

Definition

An economy is <u>competitive</u> if there is an equilibrium in which all goods are priced at marginal cost

Planner's problem

Results

Proposition

An economy is competitive if and only if no firm is a bottleneck.

Intuition

Results

Proposition

An economy is competitive if and only if no firm is a bottleneck.

Intuition

Corollary

Distortions propagate: The set of firms that price above marginal cost in an equilibrium is always a (weak) superset of the bottleneck firms. But removing market power from just the bottleneck firms restores competitiveness.

Plan for Today

- Model
- Scalable algorithm to find bottleneck firms
 - Identifying bottleneck firms with ideal data
 - Identifying bottleneck firms in practice
- Proof of concept based on Uganda VAT tax data

Identifying Bottlenecks (with ideal data)

- Assume:
 - You observe technology DAG and supply chain and edge/node capacities
 - You observe final demand, D
 - Economy is in equilibrium for some price vector **p**
- Then take following algorithm:
 - Use Max-Flow Ford-Fulkerson algorithm to:
 - (i) Calculate maximum flow of goods, *f*(*G*), for the original network
 - (ii) for each firm *i*, find maximum flow in the network without firm i, f(G i)
- Recall: if prices **p** are an equilibrium, a firm *i* is a bottleneck if and only if supply cannot meet final demand at these prices with *i* removed from the network
 - bottleneck if $f(G i) < f(G) \iff f(G i) < D$

- In practice, we have:
 - Universe of firm-to-firm recorded transactions and final sales

- But:
 - Supply chain is not a DAG in general

Don't always know who supplies what

Don't know edge/node capacities

- In practice, we have:
 - Universe of firm-to-firm recorded transactions and final sales

- But:
 - Supply chain is not a DAG in general
 - Solution: Prune the network removing minimal set of links to make it a DAG
 - Don't always know who supplies what

• Don't know edge/node capacities

- In practice, we have:
 - Universe of firm-to-firm recorded transactions and final sales

- But:
 - Supply chain is not a DAG in general
 - Solution: Prune the network removing minimal set of links to make it a DAG
 - Don't always know who supplies what
 - Solution: Find alternative suppliers of the same input using a hierarchical clustering algorithm
 - Don't know edge/node capacities

- In practice, we have:
 - Universe of firm-to-firm recorded transactions and final sales

- But:
 - Supply chain is not a DAG in general
 - Solution: Prune the network removing minimal set of links to make it a DAG
 - Don't always know who supplies what
 - Solution: Find alternative suppliers of the same input using a hierarchical clustering algorithm
 - Don't know edge/node capacities
 - Solution: Estimate using the maximum flow in recent times

Plan for Today

Model

• Scalable algorithm to find bottleneck firms

• Proof of concept

- Deploy algorithm on supply chain transaction data from Uganda VAT tax declarations
- Characterization of bottlenecks
- Consequences of bottlenecks

Skip to conclusions

Data

• Uganda Tax Administration Data - 2010-2015

- VAT transaction level data
- Transaction level customs data
- Corporate Income Tax data
- Business Registration data
- Deflate all transactions using aggregate CPI
- Summary stats
 - \approx 12m transactions
 - $\approx 40 \text{K} \text{ firms}$
 - \approx 90K edges

Deploy Algorithm

- Input: All firm-to-firm transactions (from VAT data) plus total sales, every semester, 2010:2015
- Step 1: Obtain DAG
 - 14.7% of links dropped, 3.7% of total value More on DAG
- Step 2: Identify Leontieff production technology (HAC Detail)
- Step 3: Assign edge capacities: maximum observed over all semesters.
- Step 4: Connect firms to sink and source
- Step 5: Run Max-Flow Ford-Fulkerson algorithm for full DAG and then run it 37000 times more (one for each firm removed)
- Output: Set of bottleneck firms

Full Network DAG

....

Full Network DAG - All bottlenecks

Full Network DAG - Bottlenecks in one period

Example: Market Power in a Particular Supply Chain

Bottlenecks in Ugandan Supply Chains

- We identify an average of 50 critical firms per semester (out of 37K)
- Bottlenecks status is persistent
 - Prob(Firm *i* bottleneck at $t \mid i$ bottleneck at (t 1)) = 0.77
- Sectors with greatest number of bottleneck firms:
 - Agriculture, Food and Drinks Supply Chain
 - Primary Production
 - Manufacturing Processing
 - Wholesalers
 - Natural Monopolies
 - Energy Generation and Distribution
 - Service Sector Inputs

Findings

- Bottleneck firms are (statistically significantly)
 - Larger (in terms of both revenues and wages)
 - Older
 - More profitable (overall and per unit sold)
 - More central
 - In industries with fewer entrants
 - In industries with a higher HHI

Bar charts with confidence intervals

- Some evidence supports bottleneck status being a source of higher profits, revenues and profit margins:
 - Use exogenous variation in demand for exports caused by the outbreak of war in neighboring Sudan.
 - Reduced export demand increases supply within Uganda and stops some non-exporting firms from being bottlenecks.
 - This change in bottleneck status is associated with lower profits, lower revenues and lower profit margins.

Conclusion

- Tractable theory of market power bottlenecks in production networks
- Application at scale: detect bottlenecks using data on all transactions in Uganda
- Theoretical and empirical evidence that market power has non-local consequences outside of immediate market
- A diagnostic tool to identify potential sources of market power distortions that may warrant further scrutiny
- Some interesting implications:
 - Bottleneck firms are the source of market power, while firms with high price-cost margins are the symptom.
 - Mergers with vertically related non-suppliers more likely to generate market power—control more of the flow.

Market clearing: Example

Example continued

- Each producer has capacity 1
- Cost of extracting one unit of the raw material be 1
- No other production costs
- Suppose all firms set prices equal to 1
- Suppose $D_{cC}(1) = 1$ —the representative consumer has demand 1 when the price of good *C* is 1.
- Does any firm have a profitable deviation?

Market clearing

A deviation by B1

A deviation by B2

Market Clearing Definition

Definition

Given prices **p**, demands *D* and supplies *S* clear the market if

(i) demand for firm i's output induces i's input demand

•
$$\sum_{i \in Z(\theta)} D_{ci} = D_{c\theta}(p)$$

- if input θ' is required by firm *i*, then $\sum_{j} D_{ji} = \frac{\sum_{k \in Z(\theta')} D_{ik}}{A_{\theta \theta'}}$.
- (ii) network supply constraints are satisfied

•
$$S_{ij} \leq w_{ij}$$

• $\sum_i S_{ij} \leq \phi_j$

(iii) pairwise demands are satisfied

•
$$S_{ij} = D_{ji}$$
.

- (iv) no firm can source any input cheaper via a supply relationship that is not supply-constrained
- (v) indifference about whom to buy from is resolved in favor of lower total transacted cost suppliers for all $i \in N \cup \{c\}$

Supply constrained supply relationships

Consider a supply profile $S = S_{ij}$ for all *ij*.

We say firm j's supply to i is supply-constrained if either

(i)
$$w_{ji} = S_{ji}$$
; or

(ii)
$$\phi_j = \sum_k S_{jk}$$
; or

(iii) there exists an input type θ used by *j* such that *k*'s supply to *j* is supply-constrained for all suppliers $k \in Z(\theta)$.

Result: There is a unique such assignment of firms to being supply constrained or not.

Total transaction costs

Given supplies $S = (S_{ij})_{ij}$ and demands $D = (D_{ij})_{ij}$, *i*'s production costs are

$$\kappa_i + \sum_j p_j \min\{S_{ji}, D_{ij}\}.$$

We define the total transacted cost associated with *i*'s output by

$$\Psi_i := \kappa_i + \frac{\sum_j (p_j + \Psi_j) \min\{S_{ji}, D_{ij}\}}{\sum_k S_{ik}},$$

setting $\Psi_i = 0$ for raw materials

Result: Ψ_i is well defined and unique for all *i*

When markets can't clear

Need to pin down what happens following pricing deviations that prevent the market from clearing

Given prices **p**, pairwise demands *D* and supplies *S* are selected to:

- 1. Clear the market (satisfy market clearing conditions (i)-(v))
- 2. Otherwise, to meet conditions (i)-(iii)
- 3. Otherwise, to maximize final consumer demands such that conditions (i)-(iii) are met

A mapping from prices to pairwise demands *D* and supplies *S* is feasible if given prices *p*, pairwise demand and supplies are selected in a way consistent with the above criteria

Often there will be many feasible demands and supplies

Intuition

(i) No bottleneck firm implies economy is competitive

- Must be possible to satisfy demands given marginal cost pricing
- Any maximum flow provides a means of doing this. Use this to construct demands and supplies (*D*, *S*)
- Need to show that marginal cost pricing with (*D*, *S*) is an equilibrium
- Given these prices market clears—just need to check no profitable deviation by a firm *i*
- As *i* is not a bottleneck, there exists a maximum flow with no flow through *i*
- The demands and supplies associated with such a flow clear the market
- After deviation *i* markets cannot clear and give *i* positive demand (mk clearing conditions (iv) and (v))
- Thus *i* gets zero demand and the deviation is unprofitable

Intuition

(ii) No bottleneck firm implies no competitive economy

- Towards a contradiction, suppose marginal cost pricing in equilibrium and *i* is a bottleneck
- As *i* is a bottleneck, there does not exist a maximum flow with no flow through *i*
- Were *i* to increase its price, market clearing still selects a maximum flow
- Hence *i* would continue to have positive demand and the deviation would be profitable

Back

Sales

Mean and 95% confidence interval of log firm sales for critical bottlenecks and non-bottlenecks.

Wage Bill

Mean and 95% confidence interval of log firm salaries for critical bottlenecks and non-bottlenecks.

Age

Mean and 95% confidence interval of number of years since the firm registered for a Tax Identification Number for critical bottlenecks and non-bottlenecks.

Profit

Mean and 95% confidence interval of log firm profits for critical bottlenecks and non-bottlenecks.

Price-Cost Margin

Mean and 95% confidence interval of firm Price Cost Margin: (Sales - Cost)/(Cost) for critical bottlenecks and non-bottlenecks.

Betweenness Centrality

Mean and 95% confidence interval of log betweenness centrality for critical bottlenecks and non-bottlenecks.

Entrants

Mean and 95% confidence interval of the percentage of entrants in an ISIC 4-digit sector since 2014 for sectors containing a critical bottleneck firm and sectors not containing a critical bottleneck firm.

HHI

Mean and 95% confidence interval of log Herfindahl-Hirschman Index calculated using ISIC 4 digit sectors for critical bottlenecks and non-bottlenecks.

Bottleneck Consequences

- Identify if bottleneck status over time influences firm-level variables
- Run within-firm spec

$$Y_{it} = \beta_1 Bottleneck_{it} + \delta_t + \alpha_i + u_{it} \tag{1}$$

where Y_{it} is a vector of outcome variables for firm *i* at time *t*, *Bottleneck* indicates firm is a bottleneck in period *t*

Bottleneck Consequences

Bottleneck consequences

	(1)	(2)	(3)
	Sales	Profit	Profit/Sales
Bottleneck	0.112**	0.460**	0.0314**
	(0.0554)	(0.215)	(0.0123)
Observations	68040	68040	68040

With Firm Year FE; Clustered standard errors in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01

Bottleneck Consequences - Instrument for Bottleneck

- Instrument for Bottleneck status using South Sudan war as a demand shock (Rauschendorfer and Shepherd, 2020) (Violence)
- *Impacted*_{*it*}: a bottleneck before 2014, does not export to South Sudan, but where a firm in the same sector does export to South Sudan

Bottleneck Consequences - Instrument for Bottleneck

- Instrument for Bottleneck status using South Sudan war as a demand shock (Rauschendorfer and Shepherd, 2020) (Violence)
- *Impacted*_{*it*}: a bottleneck before 2014, does not export to South Sudan, but where a firm in the same sector does export to South Sudan
- First stage

$$Bottleneck_{it} = \beta Impacted_{it} + \delta_t + \alpha_i + u_{ict}$$
(3)

• $H_0: \beta < 0$

Bottleneck Consequences

Bottleneck (Instrumented) consequences

(1)	(2)	(3)
Sales	Profit	Profit/Sales
0.339***	0.448***	0.0952***
(0.124)	(0.150)	(0.0325)
32478	32478	32478
	(1) Sales 0.339*** (0.124) 32478	(1)(2)SalesProfit0.339***0.448***(0.124)(0.150)3247832478

With Firm Year FE; Clustered standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Back

Bottleneck Consequences

IV first stage				
	(1)			
	Bottleneck			
Impacted	-0.499***			
	(0.102)			
Firm FE	\checkmark			
Period FE	\checkmark			
Observations	14022			

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Back

South Sudan Violence

Source: Rauschendorfer and Shepherd, 2020

Propagation of Distortions

Propogation of Distortions

	(1) log sales	(2) log profit	(3) price-cost margin
No bottleneck upstream	1.492*** (0.0886)	1.284*** (0.0779)	0.0704 (0.0590)
No bottleneck downstream	0.215*** (0.0376)	0.180*** (0.0341)	0.0187 (0.0211)
No bottleneck in sector	-0.0987*** (0.0258)	-0.0646*** (0.0244)	-0.00471 (0.0186)
Sector FE	\checkmark	\checkmark	\checkmark
Period FE	\checkmark	\checkmark	\checkmark
Observations	57081	57081	57081

Standard errors in parentheses

*
$$p < 0.1$$
, ** $p < 0.05$, *** $p < 0.01$

Robustness Checks

- HAC vs. ISIC ISIC
- Edge Capacity vs. Node Capacity Node Capacity
- Bottlenecks vs. Between Centrality Betweenness Centrality
- Bottlenecks vs. HHI H
- Extend Theory and Empirics to Bottleneck Coalitions:

HAC vs. ISIC

Is HAC picking up sensible connections?

- 28% of HAC clusters are in the same ISIC 4 digit
- 43% of HAC clusters are in the same ISIC 2 digit
- Many others plausibly correct e.g.
 - 5224 Cargo handling
 5320 Courier activities
 - 4220 Construction of utility projects 4100 Construction of buildings
 - 4663 Wholesale of construction materials, hardware, plumbing and heating equipment and supplies
 4100 - Construction of buildings

HAC vs. ISIC

Re-run using ISIC classifications of firms

• Strategy 1: all suppliers with the same ISIC sector are considered in the same industry

HAC vs. ISIC

Re-run using ISIC classifications of firms

- Strategy 1: all suppliers with the same ISIC sector are considered in the same industry
 - Correlation in F(G i) is 0.55
 - Finding fewer bottlenecks when using ISIC sectors (19 compared to 50)
 - ISIC sector bottlenecks are correlated with HAC bottlenecks (11 out of 19)

HAC vs. ISIC Sales

Mean and 95% confidence interval of log firm sales for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: ISIC Sector
HAC vs. ISIC Wage Bill

Mean and 95% confidence interval of log firm salaries for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS:ISIC Sector

HAC vs. ISIC $_{\mbox{\tiny Age}}$

Mean and 95% confidence interval of number of years since the firm registered for a Tax Identification Number for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: ISIC Sector

HAC vs. ISIC

Mean and 95% confidence interval of log firm profits for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: ISIC Sector

HAC vs. ISIC Price-Cost Margin

Mean and 95% confidence interval of firm Price Cost Margin: (Sales - Cost)/(Cost) for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: ISIC Sector

HAC vs. ISIC

Betweenness Centrality

Mean and 95% confidence interval of log betweenness centrality for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: ISIC Sector

HAC vs. ISIC

Mean and 95% confidence interval of the percentage of entrants in an ISIC 4-digit sector since 2014 for sectors containing a critical bottleneck firm and sectors not containing a critical bottleneck firm. LHS: Edge Capacity RHS: ISIC Sector

HAC vs. ISIC $_{\rm HHI}$

Mean and 95% confidence interval of log Herfindahl-Hirschman Index calculated using ISIC 4 digit sectors for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: ISIC Sector

Back

Node Capacity vs. Edge Capacity

Re-run using Node capacity of firms

- Assign each edge g_{ij} the sum of the out flow in a given period from node $\sum_{i} g_{ij}$
 - Intuition: firm could reroute all production through any edge
- Results
 - Correlation in F(G i) between node and edge capacity is 0.56
 - Node capacity gives fewer critical bottlenecks (1-8 vs. 50 in pooled sample)
 - Node capacity bottlenecks are almost a subset of edge capacity bottlenecks

Node Capacity vs. Edge Capacity _{Sales}

Mean and 95% confidence interval of log firm sales for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: Node Capacity

Node Capacity vs. Edge Capacity _{Wage Bill}

Mean and 95% confidence interval of log firm salaries for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: Node Capacity

Node Capacity vs. Edge Capacity $_{\mbox{\tiny Age}}$

Mean and 95% confidence interval of number of years since the firm registered for a Tax Identification Number for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: Node Capacity

Node Capacity vs. Edge Capacity Profit

Mean and 95% confidence interval of log firm profits for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: Node Capacity

Node Capacity vs. Edge Capacity Price-Cost Margin

Mean and 95% confidence interval of firm Price Cost Margin: (Sales - Cost)/(Cost) for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: Node Capacity

Node Capacity vs. Edge Capacity

Betweenness Centrality

Mean and 95% confidence interval of log betweenness centrality for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: Node Capacity

Node Capacity vs. Edge Capacity Entrants

Mean and 95% confidence interval of the percentage of entrants in an ISIC 4-digit sector since 2014 for sectors containing a critical bottleneck firm and sectors not containing a critical bottleneck firm. LHS: Edge Capacity RHS: Node Capacity

Node Capacity vs. Edge Capacity

Mean and 95% confidence interval of log Herfindahl-Hirschman Index calculated using ISIC 4 digit sectors for critical bottlenecks and non-bottlenecks. LHS: Edge Capacity RHS: Node Capacity

Back

Centrality vs. Max flow

- Are we simply picking up firm centrality within the network or are we observing some additional variation?
- Calculate betweenness centrality for each firm in each time period
- Run specification

$$Y_{it} = \beta Bottleneck_{it} + \gamma Centrality_{it} + \alpha_t + \alpha_i + u_{it}$$
(4)

where Y_{it} is a vector of outcome variables for firm *i* at time *t*

HHI vs. Max flow

	(1)	(2)	(3)	(4)	(5)	(6)
	log sales	log profit	price-cost margin	log sales	log profit	price-cost margin
log centrality	0.0226***	0.0163***	-0.00493***	0.0226***	0.0163***	-0.00493***
	(0.00221)	(0.00246)	(0.00188)	(0.00221)	(0.00246)	(0.00188)
bottleneck				0.220***	0.138**	0.0396
				(0.0598)	(0.0636)	(0.0341)
N	40456	40456	40456	40456	40456	40456
r2	0.949	0.916	0.764	0.949	0.916	0.764
r2_a	0.935	0.893	0.700	0.935	0.893	0.700
r2_within	0.00714	0.00262	0.000264	0.00750	0.00272	0.000273
r2_a_within	0.00711	0.00259	0.000233	0.00744	0.00266	0.000211

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Centrality vs. Max flow

	(1)	(2)	(3)	(4)	(5)	(6)
	log sales	log profit	price-cost margin	log sales	log profit	price-cost margin
HHI	-0.221**	-0.0792	0.0428	-0.220**	-0.0786	0.0432
	(0.0926)	(0.0886)	(0.101)	(0.0926)	(0.0886)	(0.101)
bottleneck				0.276***	0.125^{**}	0.0786^{*}
				(0.0705)	(0.0629)	(0.0451)
N	50459	47808	43335	50459	47808	43335
r2	0.935	0.915	0.742	0.935	0.915	0.742
r2_a	0.918	0.892	0.675	0.918	0.892	0.675
r2_within	0.000383	0.0000454	0.0000117	0.000720	0.000111	0.0000430
r2_a_within	0.000358	0.0000189	-0.0000174	0.000670	0.0000583	-0.0000153

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Back

Consumer problem and induced demands

• A representative consumer chooses consumptions $x_c \in \Re^{|N|}$

$$\max_{x_c} u(x^F) \text{ subject to } x_c \cdot p \leq \omega,$$

where x^F be a vector with entries $x_{\theta}^F = \sum_{i \in Z(\theta)} x_{ic}$ for $\theta \in F$, representative consumer has utility $u(x^F)$ and wealth ω , $u(\cdot)$ is a continuous, twice differentiable, strictly increasing and strictly quasi-concave function

 Solution is a demand correspondence: Let D_{cθ}(p) denote consumer demand function for good θ given marginal price p

Planner's Problem

A social planner chooses supplies *S* to maximize consumer surplus subject to technology and resource constraints. Specifically, the planner's problem is to

$$\max_{S} u(x^{F})$$

subject to

- (i) Resource constraint $\sum_{i} \sum_{k} S_{ik} \kappa_{i} \leq \omega$
- (ii) Leontief production constraints and capacity constraints are satisfied
 - For all goods $\theta \in I \cup F$ and all firms $i \in Z(\theta)$, $\sum_{j} S_{ij} \leq \min_{\theta': A_{\theta\theta'} > 0} \sum_{j \in Z(\theta')} S_{ji} / A_{\theta\theta'}$.
 - $\sum_{j} S_{ij} \leq \phi_i$ for all *i*.
- (iii) Consumption of good θ is equal to amount of good θ supplied to the consumer ($x_{\theta} = \sum_{i \in Z(\theta)} S_{ic}$)

Competitive economies

Proposition

If a competitive outcome exists it solves the planner's problem

- If all firms are pricing at marginal cost, the planner faces final goods prices that represent their production costs
- Proof works by showing that producing any preferred bundle would violate the resource constraint

Back

p-equilibrium

- Can't assume that the outcome is competitive—what can be said at other outcomes?
 - Suppose we observe equilibrium prices **p**
 - And consumer demand at these prices is observed
 - Can then construct a supply network as before, but with these demand constraints
 - Bottleneck firms are then defined analogously to before

Proposition

If **p** is an equilibrium price vector, and firm $i \in Z(\theta)$ is a **p**-equilibrium bottleneck, then firm *i* makes positive profits $(p_i > \kappa_i + \sum_j p_j \frac{S_{ji}}{\sum_k S_{ik}})$

• Sufficient condition for all **p**-equilibrium bottleneck firms to also be bottleneck firms is that all goods are normal. Can then fix bottlenecks sequentially **Back**

DAG implementation

- Firms at the top of the supply-chain have lower ratios of inputs purchased relative to output sales
 - Corr (ln(outputs/inputs), partial ordering) = -0.52
- Firms downstream have higher ratios final demand sales to intermediate input sales
 - Corr (ln(final demand sales/input sales), partial ordering) = -0.43

Back

DAG implementation

Top 100 firms in partial ordering sectors

m5	Freq.	Percent	Cum.
Wholesale and retail trade	23	23.00	23.00
Construction	16	16.00	39.00
Manufacturing	10	10.00	49.00
Other service activities	8	8.00	57.00
Administrative and support service ac	7	7.00	64.00
Agriculture, forestry and fishing	5	5.00	69.00
Human health and social work activities	5	5.00	74.00
Education	4	4.00	78.00
Professional, scientific and technica	4	4.00	82.00
Transportation and storage	4	4.00	86.00
Accommodation and food service activi	3	3.00	89.00
Real estate activities	3	3.00	92.00
Financial and insurance activities	2	2.00	94.00
Information and communication	2	2.00	96.00
Mining and quarrying	2	2.00	98.00
Arts, entertainment and recreation	1	1.00	99.00
Electricity, gas, steam and air condi	1	1.00	100.00
Total	100	100.00	<u> </u>

Top 100 firms ISIC sectors

DAG implementation

Bottom 100 firms in partial ordering sectors

m4	Freq.	Percent	Cum.
Wholesale and retail trade	41	41.00	41.00
Other service activities	11	11.00	52.00
Education		9.00	61.00
Transportation and storage		7.00	68.00
Manufacturing	5	5.00	73.00
Accommodation and food service activi	4	4.00	77.00
Administrative and support service ac	4	4.00	81.00
Agriculture, forestry and fishing	4	4.00	85.00
Construction	4	4.00	89.00
Activities of extraterritorial organi	3	3.00	92.00
Human health and social work activities	2	2.00	94.00
Professional, scientific and technica	2	2.00	96.00
Public administration and defence: co	2	2.00	98.00
Arts, entertainment and recreation	1	1.00	99.00
Information and communication	1	1.00	100.00
Total	100	100.00	<u> </u>

Bottom 100 firms ISIC sectors

Hierarchical Firm Clustering Algorithm

- Aim: identify firms providing the same inputs
- Strategy: use assumption of Leontieff production and panel dataset to infer when two inputs are the same
- Example:
 - to produce cement you require 1 unit of limestone and 1.2 units of gypsum
 - if we observe in two periods the ratio of inputs we can infer they are the same type

Hierarchical Firm Clustering Algorithm

- Aim: identify firms providing the same inputs
- Strategy: use assumption of Leontieff production and panel dataset to infer when two inputs are the same
- Example:
 - to produce cement you require 1 unit of limestone and 1.2 units of gypsum
 - if we observe in two periods the ratio of inputs we can infer they are the same type

Hierarchical Firm Clustering Algorithm

• Generalise example

- Take a firm. Initially consider all its inputs are in one cluster
- Define loss function for firm *i* of making a single partition of an input cluster, where P_{min} ∈ P is the partition that minimises the loss function from all possible single partitions.
- Loss function is quadratic: partitions that violate Leontieff constant proportions (over time) generate greater losses
- Calculate a proportionate loss from making the new partition

$$\epsilon_{il} = \epsilon_{i,l-1} [1 - L_i] \tag{5}$$

- Define cut-off c > ε_{il} for whether to stop the algorithm at layer *l*. We choose c = 0.3.
- If proportionate loss greater than cut-off ε_{il} > c or number of inputs = number of partitions, then go to next firm, if not then repeat algorithm for all new possible partitions.