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The world we live

• Choice set for consumers is nowadays immense, mostly unknown, e.g.
products, news, movies, songs, assets, posts to read, papers ...
▶ products in Amazon Marketplace: 353m
▶ songs on Spotify: 90m
▶ movies on (US) Net�ix catalog: 6000
▶ videos on YouTube: 26bn
▶ millions of news on Facebook
▶ ...



Ocean of products

• We will never be able to fully explore this ocean of products,
▶ too many alternatives and even if we knew they exist...
▶ we would not know our own tastes for these products

• We need some help!

What is the new sextant to navigate this ocean?



Recommender Systems

• Def. Recommender Systems (RS) are software programs providing
personalized recommendations to users/consumers about speci�c
items/products.

• They predict users' preferences by collecting information on users'
valuations of items tried in past, also by other users:
a collaborative tool

• With predicted match-value, RS make di�erent items prominent to
di�erent users (personalized prominence)



Recommender Systems

RecSys Team at X

"Our high-level goal is to make content discovery e�ortless and to free the
user from the need for manual curation.
Personalized recommendations are essential to a wide range of
technology-enabled products, and X is a prime example of this.
The primary aim is to facilitate e�ortless content discovery for users,
thereby eliminating the requirement for manual curation."



Recommender Systems: applications

• products (Amazon and Google)

• music (Spotify)

• movies (Net�ix, Amazon)

• videos (YouTube)

• socials (Facebook)

• apps (Google Apps)

• �nancial products (Betterment, robo-advisor)

• academic articles (Elsevier)

• referees (Elsevier)

• ...



Why do we care?

Recommender Systems (RS) are already shaping users' choices

• Recommended: Net�ix movies 75%, Amazon views 35%, Spotify
songs 40%, YouTube videos 60%

Worries and claims about algorithmic recommendations

• Heated policy debate, risks for competition and democracy

• DSA � large online platforms [...] may need to mitigate the negative
e�ects of personalised recommendations.�

• Rich-get-richer: RS exasperate popularity

• Endogeneity/feedback-loop issue with AI in markets: (re)trained on
data which contributed to generate
→ �bias in the data� vs. bias in algo



Recommender systems and markets

Buyers

• Uninformed buyers search for products and RS give personalized
recommendations, inducing an �algorithmic-mediated demand�:

1. informing of unknown products
2. giving prominence to certain products

Sellers

• Adapt their pricing strategies to algorithmic demand

Platforms

• Design their RS, e.g. best vs. manipulated recommendations



Recommender systems and economic modelling

• In typical search model, idiosyncratic preferences, for simplicity ...

• ... but then typical RS would be useless

• In reality, preferences and product characteristics show systematic
similarities and di�erences

• and platforms observe feedback for only a tiny fraction of all
consumer-product pairs, estimates subject to small-sample biases

• Integrating these key elements results in a highly complex framework
that challenges the application of analytical methods.



Methodology to study AI and markets

Experimental (simulation) approach

• We operate realistic AI systems in synthetic and controlled
environments
▶ Synthetic = we generate key economic dimensions
▶ Controlled = we control training data of the algo

• Challenges: (i) Algos must be similar to those used in markets,
(ii) Economic environments must be realistic

Intended contribution

1. Methodological: use sound economic analysis with realistic AI
algorithms

2. Speci�c: studying the implications of AI in applications (e.g. pricing
algorithms, recommender systems)



Literature
• IO/theory literature of information to imperfectly informed consumers

▶ Closest are Zhong (2022) and Zhou (2022): like us with di�erentiated
products, heterogeneous consumers, and consumer search

▶ They show providing pre-search information reduces prices
▶ For tractability assume idiosyncratic preferences (RS useless here)

• Trade-o� with more information, Armstrong and Zhou (2022),
Anderson and Renault (2002): better match but also higher prices

▶ But they abstract from both consumer heterogeneity and search
▶ Adding these ingredients (but with idiosyncratic tastes) Zhong (2022) and

Zhou (2022) �nd price reduction and no trade-o�

• Manipulation of recommendations
▶ Hagiu Jullien (2011), de Corniere Taylor (2019), Teh Wright (2020),

Bourreau Gaudin (2022), Peitz Sobolev (2022), Bar-Isaac Shelegia (2023)
▶ We con�rm price-reduction of manipulation, but in a di�erent model

• Methodology: realistically including all elements needed makes theory
(so far) intractable

▶ Similar methodology, Lee and Wright (2021) and Castellini, Fletcher,
Ormosi, and Savani (2023)

▶ Do not consider individual search benchmark to contrast with the RS
▶ But do not study product market competition and e�ects on prices



Conceptual framework

Basic ingredients

• Set of items

• Set of users

• Dataset (Rating Matrix): contains observed ratings of items e�ectively
consumed by some users, but just for few user/item combinations

Goals of a RS is to match items to users:

1. predict preferences and thus ratings for unobserved user-item
combinations, i.e. those items that a given user did not consume yet

2. rank items for any user

3. provide personalized recommendations: show highest ranked items



Conceptual framework

The Rating Matrix R

• Rating matrix R (IxJ)

• I users & J items

• Some observed ratings rij
• R very large and very sparse
(typically 1-5% non-blanks)

Items
A B C D

1 4.5 2.0

Users 2 4.0 3.5

3 5.0 2.0

4 3.5 4.1 1.0

The task is:
predict missing ratings (matrix completion)
→ make personalized recommendations



Environment & Recommendation Algorithm
Economy:

• We use a standard discrete choice model of di�erentiated products
with systematic correlations across users/items: RS possibly useful

• We create J synthetic items with speci�c characteristics, controlling
for horiz./vertical di�erentiation + central/niche products

• We create I users, each knowing own personal characteristics but not
products' characteristics (incomplete information): thus searching (at
cost) for individual best match-value item

Algorithm:

• From the Computer Science toolbox, we use Model-based
Collaborative-Filtering RS: popular, handling huge rating matrices
(matrix decomposition with users & products embeddings)

• We build Rating Matrix R with realistic properties: low density ≈ 1.2%

• Analytical properties of such algorithmic estimators in small samples
inherently di�cult/impossible to characterize



Model: Products and Preferences

A discrete choice model of di�erentiated-substitute products with
systematic correlations across users/items: RS possibly useful

We create I synthetic users and J synthetic items:

• item-j characteristics βj = (βj1, ...βjk)

• user-i preferences θi = (θi1, ..., θik)

• a random utility model ũij = θi · βj + ε̃ij with normal iid errors

We generate (θ, β) controlling for horizontal-vertical di�erentiation, and
central/niche items, e.g. distributed uniformly over arc



Experimental protocol, data and information

• We build dataset R replicating key features in Net�ix Challenge:
I/J (24000/800 ≈ 30), #obs/#param(≈ 5), density (≈ 1.2%)

• For each environment, we run 100 simulations

Two types of data:

• Exogenous data: R built with ratings of randomly chosen items
per-user (rating reported into R with noise)

• Endogenous data to assess feedback-loop: initialize R with few
random ratings per-user, make recommendations, that users follow
reporting ratings (with noise), thus populating R till target density

Two worlds to compare, identifying e�ects of RS:

• Individual search benchmark with no RS (Anderson Renault Wolinsky)

• RS environment: each user receive a personalized recommendation
(prominence), decides to follow if good, or start searching



Baseline environment

Part I: We initially assume:

• Subscription-based platforms (active items' sellers Part II)

• Platform always recommends best match (manipulation in Part III)

• Reported ratings are the realized utilities (robust.)



Results



Part I: Concentration and Superstars

Figure: Items' market shares, ordered (≈horizontal di�erentiation, 25 items)



Part I: Product market concentration

% change RS vs. Benchmark
horizz.di�.
(α = 0)

interm.di�.
(α = 1

2
)

vertic.di�.
(α = 1)

Market-share of central products 20.61%
(11.380%)

140.67%
(2.196%)

72.30%
(0.339%)

HHI 100.15%
(1.822%)

214.90%
(4.669%)

153.08%
(0.989%)

Market-share peripheral products −20.66%
(2.806%)

−16.39%
(3.449%)

−38.11%
(0.561%)

Result (Concentration Bias) The RS induces:

1. strong super-star e�ect of central products

2. strong increase of HHI

3. decrease of tail-peripheral products (no-long tail e�ect)

4. minor role of feedback loop



Preferences and Products Estimations

Giving the RS the right model, it estimates rij = θ̂i · β̂j



Is Concentration Bias an issue?

% change RS vs. Benchmark
horizz.di�.
(α = 0)

interm.di�.
(α = 1

2
)

vertic.di�.
(α = 1)

Users' surplus +1, 21%
(0.01%)

+2.72%
(0.01%)

+5.82%
(0.01%)

• Result (Consumer Surplus): RS consistently increases users' surplus
thanks to: (i) better user-item match and (ii) saving search costs.

• Per-se the bias on concentration does not tell much: it could be
weak/strong competition with opposite welfare implications

• How RS and its biases a�ect competition?

Part II (Amazon-like platform with active items' sellers)
We measure intensity of competition with the RS

• calculate Nash equilibrium prices with and without RS



Algorithmic demand

Now users also imperfectly informed about (p1, ..., pJ)

Individual search benchmark

• Sellers anticipate users' search decisions and calculate the expected
demand Dj(pj , p−j) (passive beliefs and no directed search)

With Recommender system

• for comparability, recommendations are independent of prices

• sellers anticipate recommendations and how they a�ect buyers' search
and decisions: i.e. they rely on the algorithmic demand

Compare equilibrium prices when sellers use Dj(pj , p−j) or D
algo
j (pj , p−j)



Equilibrium (weighted-)price %-change

→ increasing vertical di�erentiation

%. Di�. mean +15.10 +13.01 +9.06 +7.39 +7.13
% Di�. sd 0.41 0.28 0.15 0.08 0.03

Results (Price E�ect)

• RS substantially increases prices

• Feedback loop (unreported) slightly reduces prices



Consumer surplus %-change

Search Cost = 0.002
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Results (Net Consumer Surplus)

• Price reaction to RS eats most of match-value increase, and can even
reduce consumer surplus (horiz. di�erentiation).

• Feedback loop (unreported) very similar.



Anatomy of algorithmic demand

Demands: Red RS � Blue Benchmark

1. higher WTP users → upward-vertical shift (p ↑)
2. more similar users → counter-clockwise rotation (p?)

3. prominence to other items → rectangularization (p ↑)
4. bias in favor(against) superstars(niche) → heterog. horiz. shift (p?)



Part III: Manipulated recommendations

• If platform earns more from transactions on certain item(s)

• It may over-recommend it, constrained by users disregarding very poor
recommendations

• Manipulation rate: favored item is recommended to x% of close but
less ideal users

Results:

• Result Manipulation reduces prices.
▶ favored seller receives more heterogeneous buyers and reduces price to

retain mismatched users, other sellers respond (complements)

• Price reduction limits negative mismatch of manipulations for
consumers and also the incentive to manipulate:
pro�t maximizing manipulation rate << 100%

• Since disfavored competitors forced to reduce prices: manipulation is
more an exclusionary abuse than exploitative



Part III: Manipulated recommendations
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Manipulation intensity

Central product
Peripheral product

• Platform's optimal manipulation rate: % of users prompted with the
favored rather than best-estimated product ≤ 32%

• Hence, the favored seller �rst gains, then loses: too much
manipulation induces too intense price competition



Quality of recommendations

Quality of reccommendations depend on the RS' information:

• Less informative ratings: discretized Likert ratings, varying error to
reported ratings

• Varying density and dimensions of rating matrix R

• Mis-speci�ed model and algo deciding on dimensions

• Algo cross-validating its hyper-parameters

• Endogenous data

• Results qualitatively con�rmed with these robustness

• But what is the role of di�erent levels of RS' information on e�ects?



Quality of recommendations and welfare

Altering information available to RS and thus its quality?

Each point is a di�erent environment (varying density, I , J, shocks, Likert
ratings, number of factors,...)

• More/better data to the RS → higher prices

• Inverted-U e�ects on consumers surplus: scope for some privacy



Extensions

• Multiple recommendations

• Price-directed search and price-mediated RS

• RS modi�es market structure: entry/exit

• Competing Recommender systems

• Complementing RecSys with LLM, e.g. for cold start probl.



Key Findings and Policy

1. RS greatly increase market concentration (super star-e�ect)

2. `feedback loop' second order: bias in the algorithm

3. RS anti-competitive for pricing, generally increasing consumer surplus

4. If platform manipulates, prices decrease, but CS decreases too

5. A notion of too-much-information for consumer surplus (privacy)

Although it does not look good, the picture is nuanced, and given the
general positive impact on CS:

• no presumption of negative impact

• we need close monitoring



New stuff with AI and market analysis

Multi-product �rms

• With recommender systems (ongoing)

• Selling with pricing algorithms: multi-markets contacts facilitate
algorithmic price-collusion

Mergers

• AI and pro�tability of horizontal mergers

• AI searching for best merger deals

AI agenti�cation: Strategic algorithmic buyers

• Durable good, heterogeneous buyers, strategically delayed purchases

• Monopolist' curse or Pacman surplus extraction?

• Colluding buyers protect against colluding sellers: but ine�ciencies



Thank you

�AI, Algorithmic Recommendation and Competition"

Giacomo Calzolari


